Tài nguyên dạy học

Các ý kiến mới nhất

Hỗ trợ trực tuyến

Điều tra ý kiến

Bạn thấy trang này như thế nào?
Đẹp
Bình thường
Đơn điệu
Ý kiến khác

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Ảnh ngẫu nhiên

    Thành viên trực tuyến

    0 khách và 0 thành viên

    Chào mừng quý vị đến với website của Nguyễn Phan Long

    Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
    Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
    Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.

    Vận dụng tính chất chia hết để giải toán.

    Nhấn vào đây để tải về
    Hiển thị toàn màn hình
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    Nguồn:
    Người gửi: Nguyễn Phan Long (trang riêng)
    Ngày gửi: 08h:16' 27-12-2019
    Dung lượng: 30.5 KB
    Số lượt tải: 0
    Số lượt thích: 0 người
    vận dụng một số tính chất chia hết để giải toán
    Khi giải các bài tập toán liên quan đến chia hết, chúng ta thường sử dụng dấu hiệu chia hết cho 2 ; 3 ; 5 và 9. Tuy nhiên trong thực tế có nhiều bài phải vận dụng một số tính chất chia hết khác để giải. Chúng ta cùng tìm hiểu một số ví dụ sau :
             Ví dụ 1 : Cho M là một số có ba chữ số và N là số có ba chữ số viết theo thứ tự ngược lại của M. Biết M lớn hơn N. Hãy chứng tỏ rằng hiệu của M và N chia hết cho 3.
     Phân tích : Hiệu hai số chia hết cho một số nào đó khi số bị trừ và số trừ cùng chia hết cho số đó hoặc số bị trừ và số trừ có cùng số dư khi chia cho số đó. Dựa vào tính chất này ta chứng tỏ hiệu chia hết cho một số nào đó bằng cách chứng tỏ số bị trừ và số trừ có cùng số dư khi chia cho số đó.
    Giải : Đặt M = abc  thì N = cba  (a > c > 0 ; a, b, c là chữ số), khi đó  M - N = abc - cba. Giả sử  cba chia cho 3 dư r (0 Ê r < 3) thì a + b + c chia cho 3 cũng dư r. Do a + b + c = c + b + a nên cba chia cho 3 cũng có số dư r. Vậy hiệu M - N chia hết cho 3.
             Ví dụ 2: Nếu đem số 31513 và 34369 chia cho số có ba chữ số thì cả hai phép chia đều có số dư bằng nhau. Hãy tìm số dư của hai phép chia đó.
                                                                                                 (Đề thi Tiểu học Thái Lan)
            Phân tích: Nếu hai số chia cho số nào đó có cùng số dư thì hiệu của chúng sẽ chia hết cho số đó. Vì số 31513 và 34369 chia cho số có ba chữ số có số dư bằng nhau nên hiệu của chúng chia hết cho số có ba chữ số đó. Từ đó ta tìm được số chia để suy ra số dư
             Giải: Gọi số chia của hai số đã cho là abc (a > 0 ; a, b, c < 10). Vì hai số đã cho chia cho số abc đều có số dư bằng nhau nên (34369 - 31513) chia hết cho abc  hay 2856 chia hết cho abc. Do 2856 = 4 x 714 nên  abc  = 714. Thực hiện phép tính ta có: 31513 : 714 = 44 (dư 97) ; 34369 : 714 = 48 (dư 97). Vậy số dư của hai phép chia đó là 97.
              Ví dụ 3 : Tìm thương và số dư của phép chia sau : (1 x 2 x 3 x 4 x 5 x … x 15 + 200) : 182.
             Phân tích : Nếu trong một tổng có một số hạng chia cho một số nào đó dư r còn các số hạng khác chia hết cho số đó thì số dư của tổng chính là r. Thương của tổng chính là tổng các thương của từng số hạng. Nếu các số chia cho số đó đều có dư thì số dư của tổng chính là tổng số dư của từng số hạng, nếu tổng các số dư đó nhỏ hơn số chia. Vậy ta xét xem mỗi số hạng của tổng đó chia cho số chia có số dư là bao nhiêu. Từ đó ta tính được thương và số dư của phép chia đó.
             Giải : Vì 182 = 2 x 7 x 13 nên số hạng thứ nhất của tổng (1 x 2 x 3 x 4 x 5 x ..... x 15) chia hết cho 182. Vì 200 : 182 = 1 (dư 18) nên số hạng thứ hai của tổng chia cho 182 được 1 và dư 18. Vậy số dư trong phép chia đó chính là 18 và thương trong phép chia đó chính là kết quả của phép tính : 1 x 3 x 4 x 5 x 6 x 8 x 9 x 10 x 11 x 12 x 14 x 15 + 1.
    (Bạn đọc tự tìm ra đáp số)
              Ví dụ 4 : Một người hỏi anh chàng chăn cừu : “Anh có bao nhiêu con cừu ?”. Anh chăn cừu trả lời : “Số cừu của tôi nhiều hơn 4000 con nhưng không quá 5000 con. Nếu chia số cừu cho 9 thì dư 3, chia cho 6 cũng dư 3 còn chia cho 25 thì dư 19”. Hỏi anh đó có bao nhiêu con cừu ?
              Phân tích : Vì số cừu của anh chia cho 9 dư 3 còn chia cho 25 dư 19 mà 3 + 6 = 9 và 19 + 6 = 25 nên nếu thêm 6 con cừu vào số cừu của anh thì số cừu lúc này sẽ chia hết cho 9 và 25. Ta lại có 9 x 25 = 225 nên số cừu đó chia hết cho 225. Từ đó ta tìm các số lớn hơn 4000 + 6 và không vượt quá 5000 + 6 chia hết
     
    Gửi ý kiến